Correction du sujet (A

Exercice 1 Calcul de termes

a) Soit (U_n) définie pour tout $n \in \mathbb{N}$ par $U_n = 3n^2 + 3(n+1) - 2$. Calculer U_0 et U_5 .

____ Correction _

$$- U_0 = 3 \times 0^2 + 3(0+1) - 2$$
$$U_0 = 1$$

$$- U_5 = 3 \times 5^2 + 3(5+1) - 2$$
$$U_5 = 91$$

b) Soit (V_n) définie pour $n \in \mathbb{N}^*$ par $V_n = \frac{2n-1}{n+1}$. Calculer V_1 et V_4 .

____ Correction ___

$$- V_1 = \frac{2 \times 1 - 1}{1 + 1}$$
$$V_1 = \frac{1}{2}$$

$$- V_4 = \frac{2 \times 4 - 1}{4 + 1}$$
$$V_4 = \frac{7}{5}$$

c) Soit (W_n) définie pour $n \in \mathbb{N}$ par

$$\begin{cases} W_0 = -1, \\ W_{n+1} = 2W_n + 3. \end{cases}$$

Calculer W_1 et W_3 .

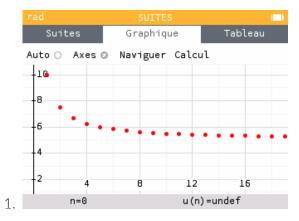
____ Correction _

$$- W_1 = 2W_0 + 3$$

$$W_1 = 2 \times (-1) + 3$$

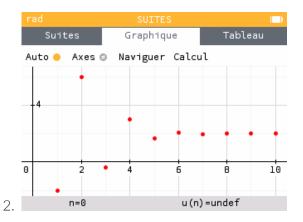
$$W_1 = 1$$

$$- W_2 = 2W_1 + 3$$


$$W_2 = 2 \times 1 + 3$$

$$W_2 = 5$$

$$- W_3 = 2W_2 + 3$$
$$W_3 = 2 \times 5 + 3$$
$$W_3 = 13$$


Exercice 2 Variations

Pour chaque graphique ci-dessous, conjecturer les variations de la suite représentée.

___ Correction _

La suite réprésentée graphiquement est décroissante.

Correction

La suite réprésentée graphiquement est non monotone.

Correction du sujet (B)

Exercice 3 Calcul de termes

a) Soit (U_n) définie par $U_n=(-1)^n(n^2+2)$ pour $n\in\mathbb{N}$. Calculer U_1 et U_4 .

____ Correction _

$$- U_1 = (-1)^1 (1^2 + 2)$$
$$U_1 = -3$$

$$- U_4 = (-1)^4 (4^2 + 2)$$
$$U_4 = 18$$

b) Soit (V_n) définie pour $n \in \mathbb{N}^*$ par $V_n = \frac{2n}{n+2}$. Calculer V_1 et V_5 .

____ Correction _

$$- V_1 = \frac{2 \times 1}{1+2}$$
$$V_1 = \frac{2}{3}$$

$$- V_5 = \frac{2 \times 5}{5 + 2}$$
$$V_5 = \frac{10}{7}$$

c) Soit (W_n) définie par

$$\begin{cases} W_0 = 4, \\ W_{n+1} = 3W_n - 2. \end{cases}$$

Calculer W_1 et W_3 .

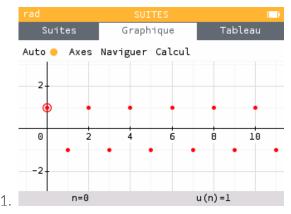
___ Correction

$$- W_1 = 3W_0 - 2$$

$$W_1 = 3 \times 4 - 2$$

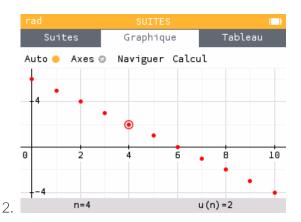
$$W_1 = 10$$

$$- W_2 = 3W_1 - 2$$


$$W_2 = 3 \times 10 - 2$$

$$W_2 = 28$$

$$- W_3 = 3W_2 - 2$$
$$W_3 = 3 \times 28 - 2$$
$$W_3 = 82$$


Exercice 4 Variations

Pour chaque graphique ci-dessous, conjecturer les variations de la suite représentée.

Correction

La suite réprésentée graphiquement est non monotone.

_ Correction

La suite réprésentée graphiquement est décroissante.

Correction du sujet (C

Exercice 5 Calcul de termes .

a) Soit (U_n) définie par $U_n = 5 - (n+1)^2$ pour $n \in \mathbb{N}$. Calculer U_0 , et U_5 .

____ Correction

$$-U_0 = 5 - (0+1)^2 U_0 = 4$$

$$- U_5 = 5 - (5+1)^2 U_5 = -31$$

b) Soit (V_n) définie pour $n \in \mathbb{N}^*$ par $V_n = \frac{n+3}{2n}$. Calculer V_1 et V_6 .

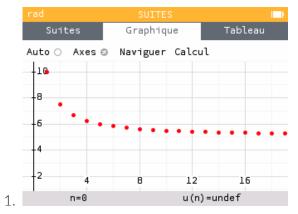
____ Correction

$$-V_1 = \frac{1+3}{2\times 1} V_1 = \frac{4}{2} V_1 = 2$$

$$- V_1 = \frac{1+3}{2\times 1} V_1 = \frac{4}{2} V_1 = 2 \qquad - V_6 = \frac{6+3}{2\times 6} V_6 = \frac{9}{12} V_6 = \frac{3}{4}$$

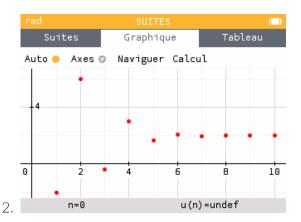
c) Soit (W_n) définie par

$$\begin{cases} W_0 = 2, \\ W_{n+1} = -W_n + 7. \end{cases}$$


Calculer W_1 et W_3 .

____ Correction

$$-W_1 = -W_0 + 7 W_1 = -W_2 = -W_1 + 7 W_2 = -W_3 = -W_2 + 7 W_2 = -2 + 7 W_1 = 5$$
 $-5 + 7 W_2 = 2$ $-2 + 7 W_2 = 5$


Exercice 6 Variations

Pour chaque graphique ci-dessous, conjecturer les variations de la suite représentée.

Correction

La suite réprésentée graphiquement est décroissante.

_ Correction

La suite réprésentée graphiquement est non-monotone.

Correction du sujet (D)

Exercice 7 Calcul de termes _

a) Soit (U_n) définie par $U_n=n^2-3n+5$ pour $n\in\mathbb{N}$. Calculer U_1 et U_4 .

____ Correction _

$$- U_1 = 1^2 - 3 \times 1 + 5 U_1 = 3$$

$$- U_4 = 4^2 - 3 \times 4 + 5 U_4 = 9$$

b) Soit (V_n) définie pour $n \in \mathbb{N}^*$ par $V_n = \frac{3n+2}{n}$. Calculer V_1 et V_4 .

____ Correction _

$$- V_1 = \frac{3 \times 1 + 2}{1} V_1 = 5$$
$$- V_4 = \frac{3 \times 4 + 2}{4}$$

$$- V_4 = \frac{7}{2}$$

c) Soit (W_n) définie par

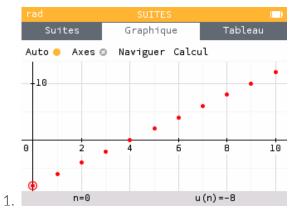
$$\begin{cases} W_0 = 1, \\ W_{n+1} = 5W_n + n - 2. \end{cases}$$

Calculer W_1 et W_3 .

___ Correction

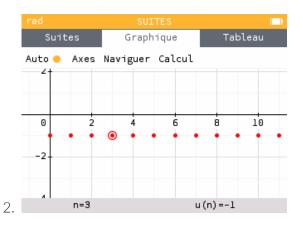
$$- W_1 = 5W_0 + 0 - 2$$
$$W_1 = 5 \times 1 + 0 - 2$$
$$W_1 = 3$$

$$- W_2 = 5W_1 + 1 - 2 W_2 = 5 \times 3 + 1 - 2$$


$$W_2 = 14$$

$$- W_3 = 5W_2 + 2 - 2 W_3 = 5 \times 14 + 2 - 2$$

$$W_3 = 70$$


Exercice 8 Variations

Pour chaque graphique ci-dessous, conjecturer les variations de la suite représentée.

Correction

La suite réprésentée graphiquement est croissante.

_ Correction _

La suite réprésentée graphiquement est constante.