1

Définition et représentation graphique ___

Définition

Fonction du second degré

Un fonction du second degré (ou polynôme du second degré) est une fonction $P: \mathbb{R} \to \mathbb{R}$ définie par

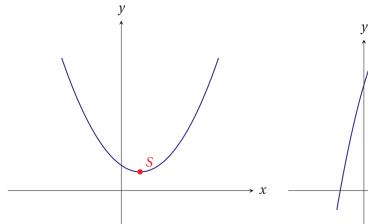
$$P(x) = ax^2 + bx + c$$
 avec $a \neq 0$.

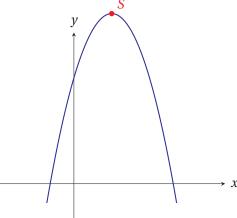
Définition

Parabole

La représentation graphique d'une fonction du second degré $P(x) = ax^2 + bx + c$ est une **parabole**.

- Si a > 0, la parabole est ouverte vers le haut.
- Si a < 0, la parabole est ouverte vers le bas.





Propriété

Sommet de la parabole

Une parabole admet un sommet de coordonnées $S(\alpha, \beta)$ avec :

$$\alpha = -\frac{b}{2a}$$
 et $\beta = P(\alpha) = c - \frac{b^2}{4a} = -\frac{b^2 - 4ac}{4a}$.

Définition

Forme canonique

La forme canonique d'une fonction du second degré est l'écriture

1

$$P(x) = a(x - \alpha)^2 + \beta$$
 où $\alpha = -\frac{b}{2a}$, $\beta = P(\alpha)$.

Démonstration

On part de P $(x) = ax^2 + bx + c$ avec $a \neq 0$.

$$P(x) = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left[x^{2} + 2\left(\frac{b}{2a}\right)x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a\left(\frac{b}{2a}\right)^{2} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^{2} + \frac{-b^{2} + 4ac}{4a}.$$

En posant
$$\alpha = -\frac{b}{2a}$$
 et $\beta = \frac{-b^2 + 4ac}{4a}$, on obtient $P(x) = a(x - \alpha)^2 + \beta$.

Propriété

Extrémum

Pour P $(x) = ax^2 + bx + c$ et $a \neq 0$, on a:

- si a > 0, P admet un **minimum** en $x = \alpha = -\frac{b}{2a}$ de valeur $\beta = \frac{-b^2 + 4ac}{4a}$;
- si a < 0, P admet un **maximum** en $x = \alpha = -\frac{b}{2a}$ de valeur $\beta = \frac{-b^2 + 4ac}{4a}$.

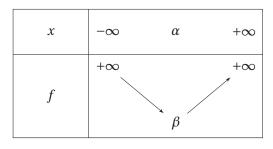
Propriété

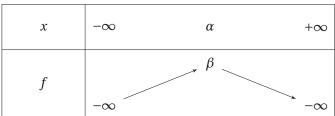
Variations

On en déduit les tableaux de variations suivants

Cas a > 0 (minimum)

Cas a < 0 (maximum)





- − Sur] $-\infty$; α], f est décroissante.
- − Sur] $-\infty$; α], f est croissante.
- Sur $[\alpha; +\infty[, f \text{ est croissante.}]$
- Sur $[\alpha; +\infty[$, f est décroissante.

Racines et tableau de signes _

Définition

Le **discriminant** d'une fonction du second degré, définie par P $(x) = ax^2 + bx + c$ (avec $a \neq 0$) est le réel

$$\Delta = b^2 - 4ac.$$

Propriété

Signe et racines

On considère le polynolynôme P $(x) = ax^2 + bx + c$ et l'équation P = 0. Le nombre de solution de l'équation dépend du disciminant Δ .

 $\Delta < 0$, L'équation (E) n'admet pas de solution dans \mathbb{R} , on dit alors que P n'a pas de racine réelle.

 $\Delta = 0$, L'équation (E) admet une unique solution dans \mathbb{R} , $S = \left\{ \frac{-b}{2a} \right\}$, on dit alors que P a une racine double.

 $\Delta > 0$, L'équation (E) admet deux solution réelles distinctes, $S = \{x_1, x_2\}$ avec :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
, et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Démonstration

Considérons la fonction du second degré
$$f(x) = ax^2 + bx + c$$
, et sa forme canonique $f(x) = a(x-\alpha)^2 + \beta$, avec $\alpha = \frac{-b}{2a}$ et $\beta = -\frac{b^2 - 4ac}{4a}$.

$$f(x) = 0$$

$$a(x-\alpha)^2 + \beta = 0$$

$$a(x-\alpha)^{2} + \beta = 0$$

$$a(x-\alpha)^{2} - \frac{b^{2} - 4ac}{4a} = 0$$

$$a(x-\alpha)^{2} = \frac{b^{2} - 4ac}{4a}$$

$$a(x-\alpha)^2 = \frac{b^2-4ac}{a^2-4ac}$$

$$(x-\alpha)^2 = \frac{4a}{4a^2}$$

Cette équation admet des solutions si et seulement si $\frac{b^2 - 4ac}{4a^2} \ge 0$. Comme $4a^2$ est

toujours positive, $\frac{b^2-4ac}{4a^2}$ dépend uniquement du signe de b^2-4ac , noté Δ .

- Si $\Delta < 0$, l'équation n'a pas de solution.

$$S = \emptyset$$

- Si $\Delta = 0$, alors $\frac{\Delta}{4a^2} = 0$ l'équation a une solution.

$$(x-\alpha)^2 = 0 \Leftrightarrow x-\alpha = 0 \Leftrightarrow x = \alpha$$

$$S = \left\{ -\frac{b}{2a} \right\}$$

Démonstration

- Si $\Delta > 0$, l'équation n'a pas de solution.

$$(x-\alpha)^2 = \Delta$$

Soit
$$x - \alpha = \sqrt{\frac{\Delta}{4a^2}}$$

Soit $x - \alpha = \frac{\sqrt{\Delta}}{2a}$
Soit $x = \frac{\sqrt{\Delta}}{2a} + \alpha$
Soit $x = \frac{\sqrt{\Delta}}{2a} + \frac{-b}{2a}$
Soit $x = \frac{-b + \sqrt{\Delta}}{2a}$

Soit
$$x - \alpha = -\sqrt{\frac{\Delta}{4a^2}}$$

Soit
$$x - \alpha = \frac{-\sqrt{\Delta}}{2a}$$

Soit
$$x = \frac{-\sqrt{\Delta}}{2a} + \alpha$$

Soit
$$x = \frac{-\sqrt{\Delta}}{2a} + \frac{-b}{2a}$$

Soit
$$x = \frac{-b - \sqrt{\Delta}}{2a}$$

$$S = \left\{ \frac{-b - \sqrt{\Delta}}{2a} \; ; \; \frac{-b + \sqrt{\Delta}}{2a} \right\}$$

Propriété

Forme factorisée

Pour P $(x) = ax^2 + bx + c$ avec $a \neq 0$:

- si $\Delta > 0$, alors P $(x) = a(x x_1)(x x_2)$ où x_1 et x_2 sont les deux racines réelles;
- si $\Delta = 0$, alors P $(x) = a(x x_1)^2$ où $x_1 = -\frac{b}{2a}$ est la racine double;
- si $\Delta < 0$, P n'admet pas de forme factorisée sur \mathbb{R} .

Propriété

Signe du polynôme

Le signe d'une fonction de second degrés dépend de Δ et de a.

- Si $\Delta < 0$, alors le tableau de signe de la fonction f est :

х	$-\infty$ $+\infty$
f(x)	signe de <i>a</i>

- Si $\Delta = 0$, alors le tableau de signe de la fonction f est :

х	$-\infty$	$\frac{-b}{2a}$			
f(x)		signe de <i>a</i>	0	signe de <i>a</i>	

- Si $\Delta = 0$, alors le tableau de signe de la fonction f le suivant. On suppose que $x_1 < x_2$.

x	$-\infty$		$\frac{-b}{2a}$		$\frac{-b}{2a}$		+∞
f(x)		signe de <i>a</i>	0	signe de –a	0	signe de <i>a</i>	