

Discriminant & racines

Exercice 1

Pour chacune des équations ci-dessous déterminer le nombre de solutions.

1.
$$x^3 - 4x - 12 = 0$$

2.
$$-2x^2 + 4x - 1 = 0$$

3.
$$x^2 - x + 1 = 0$$

Exercice 2

Résoudre dans R les équations suivantes :

1.
$$-2x^2 + x - 1 = 0$$

2.
$$2x^2 - 2x - 1 = 0$$

3.
$$5x^2 - 3x = 2$$

4.
$$x(2x-1)=1$$

5.
$$x^2 = 2x^2 - 5x - 1$$

6.
$$-x + 3x^2 - 1 = 0$$

7.
$$x^2 + 23x + 3 = 0$$

8.
$$-3x^2 + x = -\frac{1}{4}$$

9.
$$2x(5+2x) = 9-2x$$

Forme factorisée et tableau de signes _

Exercice 3

Déterminer si possible la forme factorisée des fonctions du second degrée suivantes :

$$f(x) = 3x^2 + 5x - 4$$

$$h(x) = 7x^2 - 4x + 9$$

$$g(x) = 4x^2 - 3$$

$$i(x) = 4x^2 - 12x + 9$$

Exercice 4

Dresser le tableau de signe des fonctions du second degré suivantes :

$$f(x) = 3x^2 + 5x - 4$$

$$h(x) = 7x^2 - 4x + 9$$

$$g(x) = 4x^2 - 3$$

$$i(x) = 4x^2 - 12x + 9$$

Exercice 5

Résoudre dans R les inéquations suivantes :

$$f(x) = 3x^2 + 5x - 4 > 0$$

$$i(x) = 2x^2 - 12x + 9 \ge 16$$

$$g(x) = -4x^2 - 3x < -8$$

Exercices d'apporfondissement ____

Exercice 6

Le bénéfice (en millier d'euros) d'une entreprise est modélisé par la fonction f définie sur [0;3], par

$$f(x) = -2x^2 + 5x - 2,$$

où \boldsymbol{x} représente le nombre d'objets fabriqués et vendus, en centaine.

- 1. Donner les formes factorisée et canonique de f(x).
- 2. En exploitant la forme la plus appropriée de f(x), donner :
 - (a) les quantités d'objets fabriqués et vendus pour lesquelles le bénéfice est positif;
 - (b) le bénéfice maximal;
 - (c) les quantités d'objets fabriqués et vendus sachant que l'entreprise a perdu 2000 €.

Exercice 7 Lancer de javelot

Une athlète lance un javelot à l'instant t=0. La hauteur h(t), en mètre, à l'instant t, en seconde, du centre de gravité est :

$$h(t) = -\frac{1}{2}t^2 + 8t + 2.$$

La hauteur est mesurée à partir du sol.

- 1. À quel instant le javelot est-il au plus haut?
- 2. Le javelot atteindra-t-il une hauteur de 32 m? À quels instants?
- 3. Le javelot atteindra-t-il une hauteur de 35 m?
- 4. À quel instant le javelot touchera-t-il le sol?

Exercice 8 Modéliser

Le champ d'un agriculteur est un rectangle deux fois plus long que large. Si l'on ajoute 5 mètres à sa longueur et 20 mètres à sa largeur, on obtient une parcelle rectangulaire dont l'aire est un hectare, soit $10\,000\,\mathrm{m}^2$.

— Quelle est la superficie de ce champ?